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ABSTRACT

Impact craters are the most prominent and studied features in planetary remote

sensing studies. These circular features are important to determine the age and

geology of the planetary surface. Traditionally, crater counting has been done

by visual inspection, limiting the scope and accuracy of retrieval. With the

advent of lunar and planetary exploration, a large amount of data is available

from various satellites which can be used to study the morphological charac-

teristics of the landscape. We propose an algorithm to automatically detect

impact craters on the surface of the Moon by using object detection framework

inspired from R-CNN network. Crater detection algorithm can be considered

as an object detection technique where we have only one object to detect, i.e.,

crater. The algorithm consists of three steps; firstly, generation of region pro-

posals from ortho images, DEM and slope images using a graph-based seg-

mentation method to limit the search space for a candidate region. Secondly,

features are extracted corresponding to each region proposal using 2-D Con-

volutional Neural Networks (CNN), following VGGNet. Finally, we propose

a post-processing algorithm to eliminate overlapped boxes detected as objects

and to optimize the boxes based on their probability score. The algorithm re-

sults a mAP@0.5 of 87.14% and mAP@[0.5, 0.05, 0.9] of 48.41% trained on

images from LRO (Lunar Reconnaissance Orbiter) dataset with a resolution of

118m/pixel for DEM and 100 m/pixel for ortho images.



Chapter 1

Introduction

Craters are the most abundant topographic elements present on the surface of plan-
etary bodies. Its nomenclature is dependent upon its formations as Impact, Volcanic or
Subsidence craters. On the surface of Moon, the most dominated types of craters are the
Impact craters, which are bowl-shaped depressions caused by asteroids and meteorites
colliding with the surface of planetary bodies (Figure 1.1).

Some large impacts like Copernicus or Tycho craters on lunar surface can even cause
secondary craters or series of craters as ejecta falls back to the surface. The impact is
also affected by the slope of the surrounding terrain, which results in complex crater
structures. The transformation from simple to complex crater on any planetary body is
dependent on acceleration due to gravity [3]. The study of complex crater formation
gives scientist an insight into the geological and morphological processes varying over
time [4]. These craters have varied shape, size, and structure which is thought to be the
result of surface processes, its properties, and impact parameters like size, mass, speed,
and angle of the falling object. Lunar surface has abundant of such craters ranging in
diameter from a few meters to hundreds of kilometers.

On the surface of Earth, the process of erosion and gravity reduces or removes the
impact of craters. The absence of atmosphere and water on lunar surface preserves these

Figure 1.1: Formation of Impact Craters [2]
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craters and their structure which is why they provide an excellent tool to understand the
surface processes that may affect the structure of lunar craters. Craters are also classified
depending upon their texture as simple and complex craters. Figure 1.2 shows the cross-
sectional profile of a simple and complex crater on the Moon’s surface. Simple craters
show crescent bright and shadow structure with a smooth profile. Whereas, complex
craters have multiple central peaks at the crater bed due to surrounding terrain or any
seismic activity. The flatness of the crater floor is measured by the flatness in the center
of the profile. The other parameter most frequently used to distinguish craters is the d/D
or depth to diameter ratio. Depth to diameter ratio is inversely related to the size of the
crater.

Lunar craters have been long studied to understand the effects of surface properties

D

D

d

d

(a)

   (b)

Figure 1.2: Cross sectional profile of (a) Simple and (b) Complex crater

and processes by studying their degradation process. Moreover, numerous planetary
missions on Moon requires the knowledge of these depressions. The first step, however,
in any such study is to locate the exact position of craters on the lunar surface with the
help of lunar images. This marking of craters has been addressed using numerous
approaches including manual marking, image processing techniques to detect circular
shapes, use of DEM to identify and locate bowl-shaped depressions, etc. With new
and high-resolution data coming in by various lunar missions such as SELENE and
Chandrayaan-1, the need to develop a robust technique for crater detection has also
increased and become challenging [5, 6, 7]. Moreover, mapping craters on lunar surface
can also serve as a tool to estimate the landing sites, route lunar probes and rovers
effectively without manual efforts.

Big data and advances in deep learning technology have improved the state of the
art performance in many computer vision related tasks especially, object detection. The
advancement in GPU technology has reduced the time required to converge the deeper

2



and larger networks. Various CNN architectures have improved the classification task
and brought the accuracy very close to human accuracy. With all these advances in the
direction of deep learning, few researchers, in recent years, have attempted to solve the
crater detection problem with the help of deep learning. This dissertation presents an
automatic method for detecting impact craters on the surface of Moon using images
from LRO database. Chapter 1 gives a brief review of the crater detection algorithms
based on ortho images and DEM. An introduction to convolutional neural networks
(CNN) has been given in Chapter 2. Chapter 3 and Chapter 4 gives the description of
the proposed methodology and the experimental results. Have you ever wondered how
do natural numbers occur in nature? Do they occur with same probability and if so, why
their study is so important? A survey on Benford’s law which explains this phenomenon
and its applications to forensics techniques has been provided in Chapter 5. Conclusion
and future work is given in Chapter 6.

1.1 A review of Crater Detection Algorithms

According to the Giant-impact hypothesis, Moon was formed from the remnant
debris of a collision between the early Earth and a Mars-sized body, Theia. The models
of the hypothesis are; a) A standard model: Earth collided with a Mars-sized body,
b) Fast-Spinning Earth Model: A fast-spinning Earth impacted with a small body, c)
Collision of two half-earth sized planets. These facts suggested that the composition of
materials on the surface of Moon and Earth are relatively similar. To further strengthen
the belief and to know more about the lunar surface and its origin, the first mission to
the Moon was send by Soviet Union’s Luna programme known as Luna 2 on September
13, 1959. However, the first space probe to reach the vicinity of the lunar surface was
Luna 1, in 1959. The images from the missions show that the surface of the Moon
is abundantly covered with crater structures showing its prominence on the Moon’s
surface. Since then, they have been studied giving scientists insight about the relative
age and geology of the surface.

In the early twentieth century, many of the crater detection tasks were carried out
manually [8, 6, 9] by marking circles on images. Even the most comprehensive cat-
alog survey [10, 11, 12, 13] on planetary bodies was prepared with manual interven-
tion. Taking into account that lunar surface harbors numerous craters with varied sizes,
shapes, and structures, manual detection of all these craters is infeasible, laborious and
prone to error task. Also, crater counting can yield disagreements up to 40% [14, 15].
However, due to the recent advances in imaging and satellite technology, ample amount
of high-resolution data has become available. Many studies have focused on designing
algorithms for automating crater detection from these datasets. A framework for 112
publications for crater detection algorithms using DEM/ optical images can be found
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in [16]. This section presents a brief review of the CDA algorithms based on data source
point of view, ortho images and DEM. The review on ortho images is further divided
according to the techniques as supervised and unsupervised learning techniques.

1.1.1 Crater Detection from Ortho Images

Unsupervised learning methods rely on inferring the structure of data from the la-
beled data. Optical images from satellites reflect craters as circular features, differenti-
ated from the background by crater rim and ejecta material. Hence, many crater detec-
tion tasks seek motivation from various image processing algorithms which can detect
circular features. Hough transform [17], based on a voting technique to detect shapes,
was used to integrate these features resulting from local variations. It is the transfor-
mation from image space to the parameter space or the Hough space. The dimensions
depend on the search parameters, three (position of x, position of y, center point) in
the case of fitting a circle. Honda et al. [18] grouped the images from Lunar Digi-
tal Image Model (LDIM) according to spatial frequency patterns and detected circular
features using a combination of Hough transform and genetic algorithms. Removal of
false candidates was done by a self-organizing map (SOM) approach.

Similarly, a combinational approach using various image processing techniques
were proposed in [19, 20, 21]. Using Multispectral images from Clementine space
mission, the authors in [22] were able to improve their accuracy to 80% from [20]. The
flowchart of the proposed algorithm is shown in Figure 1.3.

The prominence of the crater is not uniform on the lunar mare and highland region
after edge detection techniques due to illumination conditions. Authors in [23] adopted
an extensive preprocessing to enhance edges on Chang’E-1 CCD images followed by
detection using Hough transform. Kang et al. [24] proposed the best fit model tech-
nique using RANSAC, another circle detection algorithm, on high pass filtered images
using a bilateral filter. Additionally, crater classification such as simple and complex
is also proposed using various 3-D features calculated from DEM images. Authors
in [25] used template matching followed by evaluating probability volume to detect
candidate craters. Further, image segmentation techniques for delineating craters from
texture measures such as mean, variance, entropy, etc. was proposed in [26]. An object-
oriented technique to classify image pixel into similar objects on lunar reflectance im-
ages was used in [27].

Illumination conditions on lunar surface show craters as a pair of crescent shaped
bright and dark regions. Sawabe et al. [20] used this observation to detect bright and
shadow part of the crater at different sun angles and further improved these techniques
using multi spectral images [22]. Authors in [28, 29] used a boosting approach pre-
viously proposed by viola and jones (2004) [30] to detect craters from Mars Orbiter
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Figure 1.3: Flow diagram of the proposed algorithm [22]

Camera. Most of the crater detection algorithms detected large craters which were even
identifiable through low resolution images. Algorithms on sub-km crater detection was
first proposed by [31] using mathematical morphological techniques of thresholding
image into regions of bright and dark areas, processing these regions using shape based
features and classification using Support Vector Machines (Figure 1.4). Using a large
set of texture features (1089) in [32] with boosting ensemble learning algorithm and
transfer learning, better accuracy was achieved as compared to the previous one.

A similar approach was proposed in [33]. Further in [34], using texture features
in addition to shape-based features the authors were able to increase the efficiency of
the algorithm to 81%. The method was to use Adaboosting by replacing the single
threshold classifier by a dual threshold weak classifier based on the characteristics of
the distribution of features. The detection rate of 85% was achieved on High-Resolution
Stereo Camera (HRSC) images with the image resolution of 12.5 m/pixel. Gist features
were calculated on candidate craters from ortho images by edge extraction techniques
and further random forest algorithm was used as a classifier [35] . A similar method-
ology, separating bright and dark regions, tested on SELENE images, was followed by
[36] and classified the craters as round or flat craters by calculating the crater profile
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Figure 1.4: Identification of craters [31]

through DEM images. The algorithm also estimated the degradation rate by estimating
the variation in intensities at the edge of the craters.

1.1.2 DEM based Techniques

Optical images are sensitive to elevation and azimuth angles of the sun; hence at
different times, the shadow patterns may interfere with the shadow and bright parts of
images. As a result, a few of the CDAs are based on non-optical images, in partic-
ular, DEM (Digital Elevation Model) data for crater detection. Authors proposed an
approach for unsupervised crater detection algorithm using Digital topography data in
[37]. The first step was crater rim indication from profile curvature which is based on
the change in slope angle. To reduce the computational cost, the crater site is divided
into segments using flooding algorithm, resulting in a binary image. Finally, Hough
transform is used to detect the impact craters. Authors in [38] proposed an automated
method for cataloging impact craters, by using similar approach in [37]. Zuo et al. in
[39] generated contours on coarsened DEM for automatic crater detection. Authors in
[40], proposed Rotational Pixel Swapping Method (RPSW) [41] which enhances rota-
tionally symmetric patterns like circles and removes the unsymmetrical patterns from a
binary image. The candidate regions are extracted by thresholding DEM/DTM images
based on slope and angle values.

1.1.3 Data Driven Approaches

Availability of a large amount of data and advances in deep learning technology has
improved the state of the art performance in many computer vision related tasks with the

6



help of data-driven approaches. Deep Learning approach and CNN’s have made it pos-
sible to get the accuracy as close to human accuracy in classification related tasks. Some
of the very recent studies have also attempted to solve the crater detection problem using
CNN. Authors in [42, 43], compared CNN model, named MarsNet which comprised of
5 networks trained to detect objects of various size and SVM using Histogram of Ori-
ented Features (HOG) for classification of impact craters and Volcanic Rootless Cones
(VRCs) from HiRISE images of Martian surface, concluding CNN generalizes well on
the training data. Using Bandeira’s dataset [44], a comparative study is performed be-
tween CNN features and previously generated handcrafted features [45, 31, 32]. The
proposed algorithm outperformed the existing algorithms resulting in an average accu-
racy of 89 %. State of the art Faster RCNN model for real-time object detection was
used in [46]. The dataset comprises 300 manually marked images of terrain features
and 100 images of objects of different classes such as mountains, geysers, and craters.
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Chapter 2

Convolutional Neural Networks

Convolution neural network (CNN) is one of the finest and the most popular inven-
tion in the field of deep learning and is of great importance in the field of computer
vision and Natural Language Processing. The prominence of CNN’s grew in the year
2012 when Alex krizhevsky [47] won the IMAGENET challenge. The challenge was
to classify the IMAGENET dataset consisting of 1000 classes containing 1.3 million
images. Krizhevsky used AlexNet, a CNN based network to train the dataset and the
classification error was reduced from 26% to 15%. Since then, CNN’s have been widely
used in applications such as face recognition, scene labeling, human pose estimation,
speech recognition, medical imaging, etc.

A herd of elephants walking 
across a dry grass field

A street sign on the side of 
the road

A bunch of umbrellas that 
are hanging from a ceiling

Figure 2.1: Scene classification from CNN [48]

In Figure 2.1, a neural network can caption the scene such as "A bunch of umbrellas
that are hanging from a ceiling," whereas in Figure 2.2 CNN can detect objects in an
image such as human, dogs, bicycle, etc.

Here, we give an intuitive understanding of the need for Convolutional Neural Net-
works. The task of image classification is to input an image to the network, and the
output can be a probability of classifying an object into one of the classes or the clas-
sified pixels as in the case of semantic segmentation. Humans learn from the task of
pattern recognition from birth, such as color and texture differences. Thus, it is not

8



Figure 2.2: Object detection from CNN [49]

difficult for humans to differentiate between a dog or a cat or different types of cats.
But when a network sees an image (Figure 2.3), what it sees is an array of pixel values.
For an RGB image of size 100x100x3, each pixel value will indicate the intensity value
at the particular point. We want the system to mimic how humans visualize and learn
to differentiate the things around them. The idea is to make the network learn various
patterns in the images and how the pixel values are related.

31 32 33 34 35 37 38 35 

34 34 33 33 36 42 46 36 

35 35 33 34 38 45 51 41 

34 36 35 35 38 45 51 47 

31 36 34 36 37 44 48 52 

30 31 30 32 32 34 34 55 

30 30 31 31 32 33 34 52 

31 31 31 32 33 33 34 47 

Figure 2.3: Image as seen by the network

Convolutional Neural Networks are inspired from animal visual cortex and hold
great importance for the machine learning practitioners. Hubel and Weisel in 1959
experimented [50] on visual cortex of cats which gave some fascinating results. Cortex
has a complex arrangement of cells which respond to the stimuli only in a restricted
region of the visual field known as the receptive field. These small regions overlap
to form the complete visual field. The first network on this finding to be simulated
on a computer was proposed by Fukushima [51]. But the first fully connected CNN
was LeNet, which was developed for the classification of the handwritten digits and
also implemented backpropagation algorithm. However, due to unavailability of GPU
technology during that time, it failed to work on complex problems.

Artificial Neural Networks (ANNs), are a type of feedforward network, analogous
to the human nervous system or “neurons” and hold great importance for the machine
learning practitioners. A simple ANN consists of series of layers, each consisting of
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multiple neurons connected to each other forming the network. The input layer feeds
the data to the hidden layers, or the intermediate layer, where the training takes place
and the output layer which generates the trained targets. The output of a neuron be
represented as follows,

yi = f(wTxi + b)

where xij is the input to the neuron, w is the training weights, and b is the offset to the
network.

The weights are randomized initially, and the network is trained to best approximate
the target function, by computing the loss function and backpropagating it through the
network. The loss function can be the mean square error, mean approximation error,
etc. The output is bounded by an activation function f such as sigmoid between [0,1]
for binary class classification or a softmax activation is used for multi-class classifica-
tion. The complexity of the network increases with the increase in the number of the
hidden layer which in turn increases the number of parameters. Convolutional Neural
Networks or CNN’s differ from the traditional Nets in terms that the former exploits
the spatial correlation in the input data be it to time series or image data, and has fewer
parameters from ANN due to parameter sharing and sparse connection in the model.
CNN’s extracts feature at the different layer where the complexity of the features in-
crease as we move from the initial hidden layer to the output layer. A typical CNN
architecture is shown in the Figure 2.4.

Figure 2.4: CNN architecture

CNN architecture consists of mainly three layers viz the Convolutional layer, pool-
ing layer, and the fully connected layer.
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2.1 Convolutional Layer

The convolutional layer, or the core building block of the CNN, outputs a function
S(x, y) on a 2-Dimensional input I , such as images in our case, with a kernel k of size
(2m+ 1)x(2n+ 1) as,

S(x, y) = (I ∗ k)(x, y) =
m∑

i=−m

n∑
j=−n

I(x+ i, y + j)k(i, j)

where x, y are the image coordinates. The layer consists of multiple filters which slide
over the image to generate a feature map. The output size of each convolutional layer
can be calculated as,

W = (W − F + 2P )/S + 1

where W is the size of the image, F is the filter size, P is the padding size and S is the
stride. Keeping stride and padding greater than 1 is a way to reduce the dimensionality
of the feature map generated. Consider the 5x5 image in the Figure 2.5, convolved by
a 3x3 filter which generates an output activation map of size 3x3 without any padding
and stride of 1.

11 10 6 16 18

10 10 23 11 9

10 16 11 22 21

16 18 43 23 34

12 39 44 48 46

1 0 1

0 1 0

1 0 1

48 87 67

108 73 131

95 168 145
*

Figure 2.5: Feature map from convolutional layer

Multiple convolution operations are performed in a single layer to produce a series
of activation map.

2.2 Non- Linearity Layer

The convolution layer is followed by a non-linear activation function, to increase
nonlinearities in the network, such as ReLU (Rectified Linear Unit) which is also called
the detector stage [52]. The intuitive idea behind introducing the non-linearity is that
the real-world systems are non-linear and if we avoid this step, it is merely a scaled
version of the input. This stage reduces the number of parameters and enhances the
computations.
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2.3 Pooling Layers

Pooling layers which can be the max pool or average pool, take the maximum or
average inside a small rectangular window, to make the network translational invariant.
It reduces network parameters and increases the computational power of the system.
Here in this case (Figure 2.6), the max pooling is done on the feature map with a grid
size of 2x2.

11 10 6 16

10 10 23 11

10 16 11 22

16 18 43 23

11 23

18 43

Figure 2.6: Max pooling

2.4 Fully Connected Layer

The last pooling layer is usually followed by a single or multiple fully connected
layers which are similar to traditional Nets. The neurons in fully connected layers are
connected to all the activations in the previous layers. The output fully connected layer
contains as many neurons as the number of classes to be classified. For example, in
case of CIFAR-10, the output fully connected layer has ten output.
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Chapter 3

Methodology

The problem of crater detection can be treated as an object detection problem where
there is only one object, crater. However, conventionally object detection is performed
on mostly RGB images where objects are distinguished based on their colors, intensity,
shadow, and association. Craters, on the other hand, are discriminated based on dif-
ferent properties, e.g., shadow-brightness pattern based on the lighting direction, their
elevation profiles from DEM, slope values, etc. Also, the popular COCO dataset for
object detection contains 7.7 objects per image, on an average [53], while the lunar sur-
face is dominated by impact craters of varying sizes which ranges from a few hundred
meters to hundred kilometers in diameter. For crater detection, the main aim is to re-
duce the false positives thereby increasing precision even if the recall may suffer. Given
the similarity between object detection and crater detection, we adopted a methodology
inspired by R-CNN [1]. The first step is to use a category independent algorithm to
generate region proposals. In our case, the best results were generated from a graph-
based algorithm by Felzenswalb & Huttenlocher [54]. The second step is to train all the
proposals using a CNN model generating class labels and classification scores. Finally,
we use a graph-based post-processing method to improve localization precision.

3.1 Region Proposal

Among the various methods for traditional object detection, one common method
is to test multiple locations in the image for the presence of a given object [55, 56].
The biggest disadvantage of this approach is that there are various windows sizes, im-
age locations to try, making the computational complexity of algorithm too high and
infeasible. One solution proposed by [1] was to test only in certain regions of the im-
age, known as region proposals, instead of trying out all possible locations. There are
various algorithms to extract region proposals for an RGB image. For crater detection,
however, we are using ortho images, DEM and slope images hence, we found the graph
based algorithm [54] most suitable for our task. The method is to group pixels taking
into account the fact that similar regions can have texture variations and also consider-
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ing the global image characteristics. The idea is to merge regions only if the intensity
variation across the boundary of two regions is greater than variation in any one of the
regions.

Let us define a few terminologies related to graphs. Consider a undirected graph
(Figure 3.1) G = (V,E), with vertices or nodes vi ∈ V and E be the edges connecting
the two vertices (vi, vj). Here all the edges are bidirectional. The minimum spanning
tree (MST) of a graph is a tree in the graph where all nodes are connected with minimum
weight.
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29

Cost =(6+8+16+10+4+9+11) =64

Figure 3.1: Minimum Spanning Tree (MST)

In case of image segmentation, the graph is defined with vertices as image pixels
and edges as the weight which measures the dissimilarity between the pixels (which can
be color, location, etc.). Segmentation is defined as partitioning the image pixels into
components based on the similarity or dissimilarity of the pixels.

3.1.1 Predicate for a Boundary

To evaluate for whether there is a boundary between two components a predicate, D
is defined. The predicate is defined such that it measures the dissimilarity between the
two regions or components to the variation or dissimilarity between the elements of the
components. The ‘internal difference’ of a region is defined as maximum weight w(e)

of a Minimum Spanning Tree (MST),

Int(R) = max
e∈MST (R,E)

w(e) (3.1)

The intuition is that since MST spans the vertices with lowest edge weight, w(e) will
define the maximum variation of the region. The difference between two regionsR1, R2

or components is defined as the minimum weight edge linking the two components,

Dif(R1, R2) = min
vi∈R1,vj∈R2,(vi,vj)∈E

w((vi, vj)) (3.2)
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The difference Dif is ∞ if no edge is linking the components. We want that the
difference Dif between the two components should be greater than the internal differ-
ence of either component, Int(R1) and Int(R2). That is, the predicate is true only if
the above condition is satisfied.

D(R1, R2) =

true if Dif(R1, R2) > MInt(R1, R2)

false otherwise
(3.3)

where MInt(R1, R2) is the minimum internal difference, defined as,

MInt(R1, R2) = min(Int(R1) + τ(R1), Int(R2) + τ(R2)) (3.4)

Consider the case when the component size is 1, then Int(R) = 0. Thus, Int(R)

is not a good estimate for boundary for small region. A threshold function is defined as
which depends on the size of the component as,

τ(R) = k/|R| (3.5)

where R is the size of the component. If the value of k is large, then larger components
are preferred in the segmented output.

3.1.2 Case 1: Grid Based Segmentation

Here monochrome images are considered, and for color images, the algorithm is
run for three different channels, and the resulting components are the intersection of the
components for each channel. Edges or pixels are connected to the neighbors which
satisfy 8-connectivity. The weight w between two edges is defined as the absolute
intensity difference between two-pixel values,

w(vi, vj) = |I(xi,yi) − I(xj ,yj)| (3.6)

where I(xi,yi) is the pixel value of ith pixel. The Figure 3.2 shows the result for Grid
based segmentation.

Figure 3.2: Result for grid-graph segmentation [54]
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Here, as we can see the algorithm is not able to capture the non-local properties in
the image. The grass beneath the player is segmented into a different region since the
algorithm is capturing only the local variation in the intensity.

3.1.3 Case 2: Nearest Neighbor Graphs

The algorithm for the nearest neighbor graph is based on mapping a pixel to 5-D fea-
ture space. The weights of the edges are computed as the distance between (x, y, r, g, b)

vectors for two pixels, where (x, y) is the pixel coordinate and (r, g, b) is the color value
at that pixel location. The vertices are connected by finding m nearest neighbor using
ANN algorithm [57]. Here, the value of m is set as 10. The nearest neighbor algorithm
performs better than the grid graph and can capture global characteristics in the image.
Considering the same image used in grid graph, we can see in the Figure 3.3, the grass
is segmented into a single region although some part of the grass areas are disconnected
in the image. We have used the latter strategy for generating region proposals in our
framework.

Figure 3.3: Result for nearest neighbor segmentation [54]

3.1.4 Extraction of Region Proposal

Since the lunar images are panchromatic images, there is no meaning of r,g,b values
here so instead we have used the intensity (I), elevation (E) and slope values (S), con-
sequently, the weights will be computed as distance between vectors (x,y,i,e,s) for two
pixels. For this, we have constructed 3-channel RGB images, by supplying the ortho
(intensity) images in the red channel, DEM (elevation) images in the green channel and
slope raster in the blue channel. The slope images were calculated from DEM images,
using ArcGIS software. The red channel in our images corresponds to the high intensity
in the bright part of the crater and around the rim near the ejecta. Similarly, the green
channel will correspond to the high elevation in the surrounding region of the crater and
crater rim, and the blue channel will correspond to the high slope of the crater walls
or in other words steep changes in adjacent pixels of the green channel. The region
proposals were generated from these images varying k from 100 − 400 with an inter-
val of 50 and sigma varying in the range of 0.5 − 0.9. Here, sigma (σ) is the amount
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of Gaussian smoothing to reduce digitization effect. The images for crater class were
generated from these region proposals for which the IOU with ground truth was at least
0.6 and rest of the images were categorized into the non-crater class or the background
class. We can have multiple region proposals for a single crater which will satisfy the
IOU threshold. IOU between two regions bi and bj is defined as,

IOU(bi, bj) =
area(bi ∩ bj)
area(bi ∪ bj)

(3.7)

Ground truth box 

Detected box

Ground truth box 

Detected box

Intersection 
area

Union area

IOU=

Figure 3.4: Intersection Over Union (IOU)

where, area(bi∩ bj) is the area of overlap between the boxes bi, bj and area(bi∪ bj)
is the area of union of the boxes (Figure 3.4). To encounter this, we have performed
non-maximal suppression (NMS) with the ground truth boxes and only those region
proposals which had maximum intersection over union (IOU) with ground truth are
selected. The images were warped to a pixel size of 227x227 following the procedure
by [1]. The non-crater class has a much larger number of images compared to the
crater class. To maintain the class balance, we selected as many numbers of non-crater
images as crater images, randomly. It should be noted that the before saving the images
of size 227x227, all the channels are scaled between 0 − 255 separately and converted
to unsigned-integer with 8-bit.

Figure 3.5: Extracting Region Proposals
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Figure 3.6: CNN architecture

3.2 CNN Architecture

The CNN architecture (Figure 3.6) used to classify crater vs. non-crater images
is inspired from the VGGNet [58]. Our CNN consists of twelve convolution layers,
each followed by batch normalization and ReLU activation layers. There are three fully
connected layers after the last convolution layer. Max-pooling layers are added after
the two consecutive convolution layers. To reduce the overfitting in the network, we
have used the dropout of 0.2, and the kernel regularization strength is set as 1e−3. The
first convolution layer takes the input of size 227x227x3. There are total 32 filters in
each layer of size 3x3 with stride 1. The first fully connected layer has 128 neurons
and the second fully connected layer has 64 neurons. The output of this layer goes to
the softmax with 2 neurons which provides the distribution into crater vs. non-crater
classes. Adadelta [59] with batch size 32 is used for optimizing weights and the binary
cross-entropy loss is used to penalize the wrong predictions. The learning rate is ini-
tialized to be 1.0 and decayed as the function lr/epochs, where lr is learning rate and
epochs are set to be 100. The experiments are performed on NVIDIA GeForce GTX
1080 GPU with 8 GB memory. The model with best validation accuracy is chosen as
the best model and used on test data.

3.3 Post Processing

Often a single crater may be detected by multiple boxes from which we would like
to derive the best-fit bounding box. In literature, people have used Non-Maximum
Suppression (NMS) to handle such cases. NMS performs suppression by selecting box
with the highest probability. Instead of this, we have designed an algorithm to group
the boxes based on the graph and derive the best fit from these grouped boxes.

3.3.1 Non-Maximal Suppression

In traditional object detection, Non-Maximal Suppression is one of the popular ap-
proach to remove redundant boxes. NMS is a class-specific approach for selecting the
box with highest probability and suppress all other boxes which have very high IOU
with the selected box. Our implementation for NMS at test time is as follows:
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Suppose there are N total boxes, each with probability pi where i ∈ {1, 2, ..., N}
for craters. Select the box bh with highest probability ph. Compute the IOU of bh with
bi where i ∈ {1, 2, ..., N} \ {h}.

All the boxes, bi, with IOU ≥ δ are suppressed. This process is repeated until all
the boxes are either selected or suppressed. We have set the value of δ as 0.6 to perform
NMS at test time.

3.3.2 Graph-based Approach

We have adopted the graph-based approach to group the craters. The craters which
have high overlap with each other are out in the same group. We construct an undirected
acyclic graph, G = (V,E) where V corresponds to each box, and E corresponds to
edges between the craters depending on whether they are connected or not. Given N
vertices, theoretically, there are a total of N(N − 1)/2 pairs of vertices possible. For
a given pair (vi, vj) we check whether they are connected or not. If the path between
vi and vj exists, we skip the pair otherwise we compute the IOU between the two. If
the IOU ≥ 0.3, an edge is added between vi and vj . Once the graph is computed,
we extract the connected components {c1, c2, ..., cn} from the graph which corresponds
to groups {g1, g2, ..., gn}. The worst case complexity of this grouping is O(n2) when
each component is a single vertex. However, as the graph construction progresses, we
skip the pairs for which the path already exists, thereby reducing the time required
to construct the graph. Since for each image we get such cases where grouping is
required, our complexity is always≤ O(n2). Further, since our object is crater here, the
connectivity checks on boxes which are disjoint can be ignored thus reducing the time
required.

Once the crater groups are derived, we derive the new box for that group using
weighted averaging. We use the probability scores for each box as their weight. The
region proposals give the rectangles as output hence, our detection boxes may also be
rectangles. We force these rectangles to be square by simply taking the average of
width and height. Therefore, given a box b with dimensions (x, y, w, h) which are co-
ordinates of top-left point and width and height if the box b, the crater dimensions are
derived as (x + (w + h)/4, y + (w + h)/4, (w + h)/4) corresponding to (xc, yc, rad).
Now, let us assume that the true crater ĉ is described as (x̂, ŷ, r̂), where x̂ and ŷ are
the center coordinates and r̂ is the radius. Let there be a group g which contains boxes
around the true crater ĉ. The dimension x̂ of the true crater ĉ is computed as,

x̂ =

∑n
i=1 pixi∑
pi

(3.8)

where pi is the probability of the ith crater in group g, xi is the center coordinate x of
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the ith crater in group g, and n is the number of craters in group g. Similarly the center
coordinate ŷ and radius r̂ is calculated as,

ŷ =

∑n
i=1 piyi∑
pi

(3.9)

r̂ =

∑n
i=1 piri∑
pi

(3.10)
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Chapter 4

Experimental Results

4.1 Dataset Generation

Ortho images and DEM from Lunar Orbiter Laser Altimeter (LOLA) camera of
LRO (Lunar Reconnaissance Orbiter) spacecraft were used in this work. The resolu-
tion for ortho images and DEM is 100 pixels/m and 118 m/pixels, respectively. The
regions above ±35◦ latitude were excluded to reduce projection errors. Currently, no
public dataset is available which can be used for classification of craters, hence, we
have generated our own dataset from the LRO images.

Ortho, DEM, and slope raster were used simultaneously in our work. We used
the catalog by [60] to serve as the ground truth dataset (Figure 4.1). This catalog has
been generated by using modified DEM and a CDA based on Hough transform on LRO
dataset and two Chandrayaan-1 images. This is the most complete catalog for craters≥
8 km in diameter. Ortho images and DEM from Lunar Orbiter Laser Altimeter (LOLA)
camera of LRO (Lunar Reconnaissance Orbiter) spacecraft were used in this work. The
resolution for ortho images and DEM is 100 pixels/m and 118 m/pixels, respectively.
The regions above ±35◦ latitude were excluded to reduce projection errors. Currently,
no public dataset is available which can be used for classification of craters. Hence, we
have generated our dataset from the LRO images.

The classification database corresponding to crater vs. non-crater classes was gener-
ated in our work with the help of this ground truth catalog. It should be noted here that
the catalog by [60] had many craters which were not marked or whose marking were
shifted from the actual crater position. The shift in crater markings was fixed manually
before generating the classification dataset of image size. We have restricted our crater
ground truth to 1 km in diameter. So any crater or region proposal with size less than
1 km in diameter was discarded. The sample set of our dataset has been shown in the
Figure 4.1. The images in the left show only the ortho part or the red channel. Partially
overlapped craters were categorized into negative class. Images on the left show only
the ortho part or the red channel. Partially overlapped craters were categorized into
negative class.
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(a) Crater Class (b) Background Class

Figure 4.1: Examples from our dataset (The images in the left are the ortho images or
the red channel and to the right side are the 3 channel- Ortho images, DEM, and slope
images.)

Each sample image for training is generated by randomly cropping input images,
each having a size ranging from 1857x4283 to 5274x5264 pixels. From the entire lunar
surface mosaic, we have taken only the portion which had the lighting direction from
left to right, i.e., the crater intensity increased from left to right (green and the red shaded
area in Figure 4.2). The area shaded with green color is used for training and area
shaded with red color is used for test purpose. The yellow shaded area in Figure 4.2 is
not used in this experiment as the intensity direction in that part of the image is different
than the rest. The area outside the shaded region has been discarded to decrease the
projection error.

We have first generated region proposal as explained in the methodology by varying
the sigma from 0.5 to 0.9 with the steps of 0.1 and varying minSize (minimum size of
the region proposal to be generated) and parameter k from 100 to 400 in the steps of 50.
Sigma, minSize, and k are the parameters required by the segmentation algorithm of
[54]. MinSize controls the minimum size of the component to be segmented. From the
list of generated region proposals, the proposals which have IOU at least 0.6 with the
ground truth, are considered for crater class, and rest of the proposals are considered for
non-crater class. It may happen that for a single crater, multiple region proposals might
be generated which would satisfy the IOU threshold, in such cases, we have selected
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Figure 4.2: Devision of LRO mosaic in train and test dataset ( green and red shaded
area corresponds to the training and test area )

only those region proposals which had maximum IOU with ground truth and rest of
the proposals for that particular crater are discarded. The images were warped to the
pixel size of 227x227 following the procedure by [1]. The non-crater class has a much
larger number of images compared to the crater class. To maintain the class balance, we
selected as many numbers of non-crater images as crater images, randomly. It should be
noted that before saving the images of size 227x227, all the channels are scaled between
0-255 separately and converted to unsigned-integer with 8-bit.

4.2 Evaluation of Trained Model

• To evaluate the goodness of predicted crater boxes, we compute mAP (mean
Average Precision), a standard widely used for evaluating object detection algo-
rithms [61].

• For a set of boxes, Bo = {bn |1 ≤ n ≤ N}, where N is total number of detected
boxes in an image after post processing, and Bg = {bm |1 ≤ m ≤ M}, where M
is the number of ground truth boxes for the same image, mAP is defined as,

mAP@U =
1

|U |
∑
i∈U

APi (4.1)

where, U =

{
∆min + sδ| ∀ s ∈ {0, 1, 2, ..., ∆max −∆min

δ
}
}

APi =
|TPi|

|TPi|+ |FPi|
(4.2)
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where,

TPi = {∀bj ∈ Bo|IOU(bj, Bg) > i}, IOU(bj, Bg) = max
bm∈Bg

{IOU(bj, bm)}

and FPi = Bo − TPi
We evaluate the mAP@0.5 defined as,

mAP@0.5 = AP0.5 (4.3)

where, U = {0.5} and TP0.5 is the set of all the detected boxes having IOU with any of
the ground truth box greater than 0.5.
mAP@[0.5,0.9] with δ=0.05, ∆min = 0.5, and ∆max = 0.9, is defined as,

mAP@[0.5, 0.9] =
1

9

∑
i∈U

APi (4.4)

where, U = {0.5 + 0.05s| ∀ s ∈ {0, 1, 2, ..., 8}} .

4.3 Crater Identification on the Lunar Surface

To assess the performance of our algorithm, we test it on 26 images which are
not used in the entire training process. These images come from the area shown by red
shading in Figure 4.2 and are of average size 2727x5097. We have used the same setting
for k, minSize, and sigma, as used for region proposals as used for train dataset and the
proposals, are warped to size 227x227 and score them using the trained CNN. We apply
the post-processing strategies NMS and graph-based grouping to those proposal boxes
which are predicted as craters by our CNN. Ground truth boxes for craters have been
manually annotated using crater tools.

The baseline detection results on LRO dataset are shown in the Table 4.1. Fig-
ure 4.3 shows the results of graph-based grouping on a test image. The strict measure
mAP@[0.5, 0.9] is very low as the even though our algorithm performs well for differ-
entiating the crater with non-crater class, accurate localization of crater box is a highly
challenging problem and not truly solved. Hence, as we increase the IOU above 0.75,
the AP decreases significantly and thereby decreases the mAP as well.

Considering the catalogue [60] as the ground truth, our algorithm is able to detect
nearly ∼ 1000 craters per image in the test area (red shaded area in Figure 4.2).
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Figure 4.3: Detection result on LRO dataset (green circles are the results of the pro-
posed algorithm, and red circles are ground truth which are manually annotated)

Table 4.1: Detection results (%) on LRO dataset

Training Data (LRO) Post Processing LRO test
mAP@.5 mAP@[.5 , .9]

LRO Train NMS 74.78 37.40
LRO Train Graph Based Approach 87.48 48.84

4.4 Comparing NMS with Graph-based Grouping

NMS is a popular strategy to remove the duplicate detection of one object [55].
However, in our case even after filtering the results with NMS threshold at 0.6 IOU,
there were many duplicates per crater. (Figure 4.4(a)). We have also noticed that for
large craters, detections with part of the crater may have a higher probability than the
actual crater. For this reason, we have developed a grouping strategy to derive crater
dimensions from all the redundant detection based on their probability (Figure 4.4(b)).
It can be observed from Table 4.1 that using the graph-based grouping has increased
the accuracy by ∼12 points. In further discussion, we have reported the accuracy of
graph-based grouping, unless explicitly stated.
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(a) (b)

Figure 4.4: (a) Result After NMS where multiple rings for single craters can be seen in
red markings (b) Result of Graph based grouping

4.5 Effect of Resolution

India’s first lunar mission, Chandrayaan-1, has collected the surface and elevation
data at a very high resolution of 5 m/pixel and 10 m/pixel for ortho images and DEM,
respectively. We have tested our model on these images as well to analyze how the
model behaves with different resolution data. The Chandrayaan-1 dataset has increased
the resolution by 20 fold than LRO, however entire lunar surface mosaic is not available,
and discontinuity in adjacent strips restricted us from using the Chandrayaan-1 data for
training itself.

Applying the same model, without altering the parameters, themAP@0.5 is 48.06%

and the mAP@[0.5, 0.9] is 27.49%. We observed that due to the very high resolution
of the Chandrayaan-1 dataset, edges of the image have multiple craters which are not
fully contained in the image and this results into less accurate detection near the edges
by our algorithm. Once we remove such craters which are not fully contained in the
image, our accuracy, mAP@0.5 changes to 62.23% and mAP@[0.5, 0.9] changes to
35.60% (Table 4.2).

Table 4.2: Detection results (%) on Chandrayaan-1 dataset

Training Data (LRO) Post Processing Chandrayaan-1 test
mAP@.5 mAP@[0.5 ,0.9]

LRO Train NMS 56.01 29.15
LRO Train Graph Based Approch 62.23 35.60

4.6 Testing on Martian Terrain

In this section, we discuss the generalization capability of our model. Compared to
Moon, Mars surface has a different composition, gravitational effects, and the history
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of impacts. The major difference between Moon and Mars is the presence of the atmo-
sphere on mars which would also play a significant role in the degradation of craters.

Table 4.3: Detection results (%) on Martian dataset

Training Data (LRO) Post Processing h0905_0000 HRSC
mAP@.5 mAP@[.5 , .9]

LRO Train NMS 74.69 42.67
LRO Train Graph Based Approch 84.78 59.18

Figure 4.5: Detection results on Martian data. (The Green circles represent the Ground
Truth, and Red circles are the detection result)

The Martian surface shows fewer impact craters compared to the lunar surface.
Therefore, the performance of our algorithm on Martian surface would be a good mea-
sure to show generalization capability of our model. Thus, we test our developed model
on Martian image collected by HRSC (High-Resolution Stereo Camera).

In particular we have taken the panchromatic image, h0905_0000 widely used by
other researchers for crater detection [31, 25, 34], with resolution of 50m/pixel for or-
tho image and DEM. In Table 4.3, we report the results of transfer learning on Martian
dataset, achieving 84.78% mAP@0.5 and 59.18% mAP@[0.5, 0.95] using our graph-
based approach as the post-processing step. We can see that our post-processing strat-
egy of graph-based grouping works better compared to NMS giving ∼10 and ∼16
points higher accuracy than the later for mAP@0.5 and mAP@[0.5 : 0.95], respec-

27



tively. The results are shown in Figure 4.5, where it can be noticed that our model has
successfully differentiated the "river" from the craters in the bottom left crater.
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Chapter 5

Benford’s Law and its Applications in
Forensics

A lot of discoveries that have happened has resulted from the analysis of data. J
Snow in 1854 noticed that the people suffering from Cholera are drinking water from
the same tap, which led to the discovery that Cholera is spread by drinking contami-
nated water. The study was conducted long back before the knowledge of bacterias and
viruses during that time, which further led to the development of theories in modern
microbiology.

In today’s world, technological improvement has led to low-cost sensors and higher
storage capacity which has eventually led to unbridled installations of the sensor to ac-
quire data. According to a study, researchers have predicted that 40 Zettabytes (40,000
Exabytes) of data will be generated by 2020, which is almost 300 times compared to
2005. The connection with data requires an ongoing effort to transform the data into
something insightful. Examples include detection of Gravitational Waves, observation
of the "God Particle," new drugs to prevent cancer, etc. One such way to analyze the
pattern in data is through Benford’s Law [62], which was originally introduced in 1881
by Simon Newcomb but acknowledged in 1938. One would typically assume the prob-
ability of occurrence of first digits in large datasets to be uniformly distributed. That is
the probability of occurrence of 1’s is same as of 9’s. But the first digits of a large dataset
followed some different observation. The law suggested that the numbers starting with
the digit one will occur 30% of the time and follows a logarithmic curve. Considering
it to be true, let us consider the population of top 232 countries in the year 2017 [63] as
shown in the table 5.2. We tried to plot the first digit for the population data (as shown
in the Figure 5.1). The frequency of occurrence of 1 is the highest which is about 29.7%
( table 5.1), whereas actual law predicts 30.10%. A similar trend is followed with the
other digits. This empirical study on the population data explains the Benford’s law.
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Figure 5.1: First Digit Distribution for the data in table 5.2

Digit 1 2 3 4 5 6 7 8 9

Frequency 69 37 26 27 23 16 8 14 12

Propotion 0.297 0.159 0.112 0.116 0.099 0.069 0.034 0.060 0.052

Table 5.1: Frequency of occurrence of First digit for data in table 5.2

5.1 Benford’s Law

The history of Benford’s Law dates back to the year 1881. Benford’s Law was first
observed by astronomer-mathematician Simon Newcomb, who noticed that the initial
pages of his logarithmic table were more worn out than the last pages. Inspired by this
observation, he published an article Note on the Frequency of Use of the Different Digits

in Natural Numbers [65] in American Journal of Mathematics, 1881. The paper quotes,

That the ten digits do not occur with equal frequency must be evident to
anyone making much use of logarithmic tables and noticing how much
faster the first pages wear out than the last ones. The first significant digit
is oftener 1 than any other digit, and the frequency diminishes up to 9. The
question naturally arises whether the reverse would be true of logarithms.
That is, in a table of anti-logarithms, would the last part be more used than
the first, or would every part be used equally ? The law of frequency in
the one case may be deduced from that in the other. The question we have
to consider is, what is the probability that if a natural number be taken at
random its first significant digit will be n, its second n’, etc.
As natural numbers occur in nature, they are to be considered as the ratios
of quantities. Therefore, instead of selecting a number at random, we must
select two numbers, and inquire what is the probability that the first signifi-
cant digit of their ratio is the digit n. To solve the problem we may form an
indefinite number of such ratios, taken independently; and then must make
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Country Population (July ’17) Country Population (July ’17)
China 1409517397 Madagascar 25570895

India 1339180127 North Korea 25490965

United States 324459463 Australia 24450561

Indonesia 263991379 Ivory Coast 24294750

Brazil 209288278 Cameroon 24053727

Pakistan 197015955 Taiwan 23626456

Nigeria 190886311 Niger 21477348

Bangladesh 164669751 Sri Lanka 20876917

Russia 143989754 Romania 19679306

Mexico 129163276 Burkina Faso 19193382

Japan 127484450 Malawi 18622104

Ethiopia 104957438 Mali 18541980

Philippines 104918090 Syria 18269868

Egypt 97553151 Kazakhstan 18204499

Vietnam 95540800 Chile 18054726

Germany 82114224 Zambia 17094130

Democratic Republic of the Congo 81339988 Netherlands 17035938

Iran 81162788 Guatemala 16913503

Turkey 80745020 Ecuador 16624858

Thailand 69037513 Zimbabwe 16529904

United Kingdom 66181585 Cambodia 16005373

France 64979548 Senegal 15850567

Italy 59359900 Chad 14899994

Tanzania 57310019 Somalia 14742523

South Africa 56717156 Guinea 12717176

Myanmar 53370609 South Sudan 12575714

South Korea 50982212 Rwanda 12208407

Colombia 49065615 Tunisia 11532127

Kenya 49699862 Cuba 11484636

Spain 46354321 Belgium 11429336

Argentina 44271041 Benin 11175692

Ukraine 44222947 Greece 11159773

Uganda 42862958 Bolivia 11051600

Algeria 41318142 Haiti 10981229

Sudan 40533330 Burundi 10864245

Iraq 38274618 Dominican Republic 10766998

Poland 38170712 Czech Republic 10618303

Canada 36624199 Portugal 10329506

Morocco 35739580 Sweden 9910701

Afghanistan 35530081 Azerbaijan 9827589

Saudi Arabia 32938213 Hungary 9721559

Peru 32165485 Jordan 9702353

Venezuela 31977065 Belarus 9468338

Uzbekistan 31910641 United Arab Emirates 9400145

Malaysia 31624264 Honduras 9265067

Angola 29784193 Tajikistan 8921343

Mozambique 29668834 Serbia 8790574

Nepal 29304998 Austria 8735453

Ghana 28833629 Switzerland 8476005

Yemen 28250420 Israel 8321570

Table 5.2: Population of top 232 countries by UN Nations [64]
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the same inquiry respecting their quotients, and continue the process so as
to find the limit towards which the probability approaches.

Newcomb thus concluded that all of the digits are not equally likely and that (in base 10)
a number which starts with one will have a probability of occurrence of 30%, starting
with two will have 17.6% and so on. He concluded that,

The law of probability of the occurrence of numbers is such that all man-
tissa of their logarithms is equally probable.

Newcomb also speculated on the probabilities of the first and second digits as shown in
the table 5.3.

Table 5.3: Newcomb’s observations for the probabilites of getting a first digit or second
digit [65]

Frank Benford, in the year 1938, studied and rediscovered Benford’s law or the First
Digit Law. He published his work titled "The Law of Anomalous Numbers" [62] in the
Proceedings of the American Philosophical Society. He was an American physicist and
engineer, also an expert in optics, with 109 publications and 20 patents in the same field.
Benford collected data from 20 different fields such as addresses, newspapers, river
data and studied the distribution of the first digit. The table 5.4 shows the frequency of
leading digits.

Few observations can be studied from the last two rows of the table 5.4 showing
the average percentage of occurrence for each digit and the result from the Benford’s
computation. One can observe that frequency of occurrence of 1’s is seen to be 0.306

nearly equal to the logarithm of 2. For 2’s the average is 0.185 which is close to the
logarithm of 3/2 or log 3− log 2, which is the logarithmic interval. Similar observations
can be seen for other digits too. The distribution follows the logarithmic relation given
by the following equation,

Fa = log

(
a+ 1

a

)
(5.1)
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Table 5.4: Distribution of first digits from Benford’s dataset[62]

where Fa is frequency of the first digit a. One important thing to observe here is that
the results were compiled from numbers having digits ranging between four to six.
Benford also postulated the frequency of digits for the second, third place, etc., and
showed that the law also holds for the reciprocals. The second digit can hold numbers
from 0-9. Hence we have ten digits for the second place and so on. Considering the
frequency Fb of a digit b at second place, which also depends on the digit a at the first
place the logarithmic interval has to be now divided into ten parts. The logarithmic
interval for number ab will be log(ab+1)− log(ab), where ab+1 is the number greater
than ab. Similarly, logarithmic interval for digit a at the first place is, log(a+1)−log(a).
The frequency of digit b at the second place followed by a is given by,

Fb = log

(
ab+ 1

ab

)/
log

a+ 1

a
. (5.2)

Lets take an example where we want to find the probability of 1 coming at the second
place following 6 from Benford’s law,

Fb = log

(
62

61

)/
log

7

6
.
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The equation can now be generalized to the digits in qth position as,

Fb =

log
abc · · · p(q + 1)

abc · · · pq

log
abc · · · o(p+ 1)

abc · · · p

(5.3)

Figure 5.2. shows the frequency of digits d at first and the second place.

(a) (b)

Figure 5.2: Distribution of a) First and b) Second digits from Benford’s Law [62]

Benford also observed that this law was more accurate to ‘anomalous’ numbers,
which do not follow any particular trend and are random such as street addresses or the
number in newspapers whereas the first digits of molecular and atomic weight deviated
from the observations.

5.2 JPEG Compression Framework

A digital image is a rectangular grid of pixels, where each pixel represents the gray-
ness of an image for a monochrome image or the component value for a colored image
such as RGB image. A 1000x1000 monochrome image with 8-bit resolution would
require megabytes of space for storage which is not satisfying. In this kind of sce-
nario, the theory of data compression comes into play. The idea is to create a compact
representation of data by exploiting statistical redundancy in an image. JPEG (Joint
Photographic Expert Group) is the most common lossy compression technique for still
images, developed by Joint Photographic Expert Group in 1992.
JPEG is a lossy compression scheme which exploits the limitations of Human Visual
System (HVS) which is more sensitive to change in brightness than color of a scene.
Thus, even on losing some of the information in the image the quality of the image
remains high. A trade-off can be made between the quality of the image and the size
by changing the compression ratio or the quality factor varying between 1 − 100, 100
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having the highest quality or the least compression. JPEG compression scheme typi-
cally consists of 5 steps, a) RGB to YCbCr color space transformation b) Sub sampling
of the Chroma colour space c) transformation from spatial domain to the frequency
domain using DCT(Discrete Cosine Transform) d) Quantization of the resulting block
DCT depending on the quality factor e) Coding the data using Huffman coding. Figure
5.3 shows the block diagram of JPEG compression chain. Since most of the literature
related to Benford’s Law in forensics is related to compression detection in images, we
provide the detailed explanation of JPEG compression technique.

Image
RGB to 
YCbCr

DCT Quantizer
Entropy 
Encoder

JPEG Image

Figure 5.3: JPEG compressor block

5.2.1 RGB to YCbCr Space Transformation

The retina of human eye contains two photoreceptors, rods and cones, which are
more susceptible to brightness than to color in an image. The RGB color space mixes
the luma and chroma components of the light using color display. Therefore, an image
is first transformed from RGB to YCbCr before compression, where Y is the luminance
factor, and Cb/Cr is the chrominance factor. Further Cb/Cr channel is down sampled by
a factor of 2 relative to the luminance channel for the same reasons discussed above.

Y = 0.299R + 0587G+ 0.114B

Cb = −0.1687R− 0.3313G− 0.5B + 128

Cr = 0.5R− 0.418G− 0.0813B + 128

(5.4)

Consider you have a 1024x1024 RGB image. The first process will be to convert it into
YCbCr color space. The next step will be to reduce the resolution of Cb/Cr channels by
2, i.e., 512x512 pixels. It implies that for each 2x2 area, we require only six different
values, instead of 12, reducing the data by 50%.
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Cr
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Figure 5.4: Color space transformation

5.2.2 Discrete Cosine Transform

Human eyes are more sensitive to low-frequency components in an image. There-
fore, it is possible to compress the data to reduce the redundant information. To convert
the spatial information to the frequency domain, Discrete Cosine Transform (DCT) is
performed, requiring less number of coefficients than any other transform. The range in
the image for an 8-bit image is shifted around center converting from unsigned [0,255]
to signed integer [-128,128]. The image is then divided into 8x8 block, which has been
selected empirically and DCT is performed. The DCT conversion is,

D(i, j) =
1

4
k(i)k(j)

7∑
x=0

7∑
y=0

f [x, y]cos
[(2x+ 1)iπ

16

]
cos
[(2y + 1)jπ

16

]
(5.5)

where i, j are the spatial frequencies, f(x, y) is the 8x8 data block and k(i, j) is the
normalization factor defined as,

k(u) =


1√
2
, if u = 0

1, otherwise.
(5.6)

DCT separates the high and the low frequencies in the image, enabling us to save
only the required frequencies depending on the quantization matrix.
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5.2.3 Quantization

Next step after block DCT on image data, quantization is applied to remove the
high frequency data. The quantization table is chosen depending on the amount of
compression, and the chroma channel is heavily quantized compared to luma channel.
The quantization is performed as follows,

P = round

(
D(i, j)

Q(i, j)

)
(5.7)

where D is the 8x8 DCT coefficients, and Q is the quantization matrix. Figure
5.5 shows an 8x8 image block with unquantified DCT coefficients and the resulting
quantized coefficients on division by the Quantization matrix.

6 4 4 6 10 16 20 24

5 5 6 8 10 23 24 22

6 5 6 10 16 23 28 22

6 7 9 12 20 35 32 25

7 9 15 22 27 44 41 31

10 14 22 26 32 42 45 37

20 26 31 35 41 48 48 40

29 37 38 39 45 40 41 40

150 80 40 12 4 1 0 0

92 75 36 13 5 0 0 0

46 23 12 10 7 2 0 0

33 19 12 8 6 3 0 0

7 3 1 1 2 0 0 0

4 3 2 1 0 0 0 0

2 1 1 0 0 0 0 0

1 1 0 0 0 0 0 0

25 20 10 2 0 0 0 0

18 15 6 2 1 0 0 0

8 5 2 1 0 0 0 0

6 3 1 1 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

DCT coeffecients Quantization table Quantization Coefficients

Figure 5.5: Quantized DCT coefficients of an 8x8 image block

Figure 5.6: Zig Zag Order Scan

5.2.4 Huffman Coding

After quantization, zig-zag order sequence (shown in Figure 5.6) orders all the AC
and DC (0,0) frequencies, from lowest to highest frequency for run-length encoding.
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After this step Huffman coding is performed which assigns shorter codes for frequently
appearing numbers than rare ones, to reduce the storage and transmission memory.

5.3 Benford’s Law in Image Forensics

With the increase in the use of digital technologies like smart phones and cameras,
the primary concern for forensics experts remains in the authenticity of the digital con-
tent in the form of images, audios or videos. Often instances arise where they can be
strong evidence in the court of law. Many software is available nowadays which can
manipulate images without leaving any visual traces and one need not be an expert in it
to do, so. A lot many manipulations such as copy and move forgery, tampering, median
filtering, double JPEG attack are possible leaving no visual artifacts but disturbing the
statistical properties of the image. For example, in median filtering attack, the pixel
difference alters in case of the manipulated image.

The first application to Benford’s law in images was provided in [66]. Authors
proved experimentally that the gradient of an image follows Benford’s law. They also
suggested a method for entropy coding depending on the logarithmic occurrence of dig-
its, similar in the case as in Huffman coding where the frequently occurring digits are
coded with lower bits. Similarly, in [67], the law was applied specifically to medical
images such as of MRI and CT scan and also developed a denoising algorithm generat-
ing good results. Application of the law to detect fingerprints and face images has been
proposed in [68]. Image splicing detection using Benford’s law has been proposed in
[69, 70]. Gonzalez [71] in his work claimed that images in pixel domain do not follow
Benford’s law since for an 8- bit image the numbers are limited in range 0-255 (since
the pixel values are not anomalous) but did follow when the image is transformed from
spatial domain to DCT (Discrete Cosine Transform) domain. The first significant digit
can be calculated as,

s =
⌊ |X|

10blog10 |X|c

⌋
(5.8)

where s is the first significant digit and X is any positive number. Transformation into
DCT domain is an important step when an image is JPEG compressed. Some of the
properties of Benford’s law were also demonstrated in their work,
Property 1: A random variable X follows Benford’s law if the random variable Y =

log10X mod 1 is uniform in [0, 1). A random variable is strong Benford if it follows
property 1.
Property 2 (Scale invariance): Suppose that X follows Benford’s law; then the random

variable Z = αX will follow Benford’s law for an arbitrary array α if only if X is strong

Benford’s.
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Property 3 (Product of independent random variables): Let X be strong Benford’s,

and let Y be another random variable independent of X. Then, the random variable

Z = X ∗ Y is strong Benford’s.

Few of the applications to image forensics from Benford’s were demonstrated in work.
Determining if an image saved in bitmap format has been compressed previously is
not a naive task. Authors proposed a scheme in which given a test image which was a
bitmap, a JPEG compression was performed with a quality factor of 100. If the image
is not previously compressed, it will obey the Benford’s law not otherwise, due to the
JPEG artifacts from the previous compression. Using similar observations, they were
also able to estimate the quality factor for the bitmap image, if previously compressed.
The idea was to compress the image with different quality factors and estimate the fit-
ting error from Benford’s law. The one with least fitting error will then be the Q-factor
or the quality factor for the test image.
An image if double compressed with different quantization matrix becomes a matter
of concern for forensics experts because it could be the result of copy-move forgery
or tampering of the image. The quantized coefficients for a double compressed JPEG
image vary from a single compressed image if the quantization matrix for the second
compression is not an integer multiple of the first quantization matrix. Thus on ev-
ery compression, the statistics of quantized coefficients deviates from the Benford’s
law. Using these statistics [72], the authors generated features by extending the idea
of applying Benford’s Law to the quantized DCT using 20 subbands generating 180-D
feature vectors and named as the Mode based first digit features. The 180 dimension
features are the probabilities of the occurrence of first digits of the quantized DCT coef-
ficients. Fisher Linear Discriminant (FLD) is used for supervised classification trained
by 1138 images from UCID (Uncompressed Color Image Database), and the rest 200
is used for test purpose. Wang et al. [73] proposed a generalized Benford’s Law for
Gaussian and Laplacian distribution. The generalization of the law is given as,

Bg(h) = a1. log 10

(
a3 +

1

ha2

)
(5.9)

where a1, a2, a3 are the model parameters whose values depend on the distribution. Ap-
plication of Benford’s to watermarked images was proposed in [74]. Discrete Wavelet
Transform (DWT) is used in JPEG2000 lossless compression method, which is the non-
commercial version to JPEG to reduce the blocking artifacts in JPEG. Qadir et al. [75]
analyzed the law on DWT coefficients and concluded that DWT coefficients more ac-
curately followed the Benford’s as compared to the DCTs, and also gave the analysis
of the DWT coefficients at different compression rates. The analysis showed they fol-
lowed Benford’s with little deviation. An image if taken when the camera is pointing
towards the light direction results in glare based problems. The retrieval of glared im-
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ages by using Benford’s law was proposed in [76]. The idea is to transform image to
DWT domain and extract all the sub band and fit the Benford’s on the significant digits
of all coefficients in each band. The images whose coefficients deviated from the law
were the ones which had glare (as shown in the Figure 5.7 ).

(a)

(b)

Figure 5.7: (a) Image ’Mountains 1’ and the 1’st digit probability and Benford’s law
distribution (b) Image ’Mountains 2’ and the 1’st digit probability and Benford’s law
distribution [76]

With the advent and easy availability of image editing software, distinguishing be-
tween photorealistic and camera generated images is a challenging task. Xu et al. [77]
proposed a method to differentiate between photorealistic and camera generated (CG)
images. The features are generated as follows (Figure 5.8). The images are separated
into RGB channels, and the 8x8 block DCT coefficients are calculated over each chan-
nel, and the frequency of the first digit is computed along all AC frequencies, which
sums up to 27-D feature for one image. The first digit frequency is also computed
over the gradient of the image which totals up to 54-D feature for each image (for each
channel the Block DCT and Gradient Magnitude will generate 18- D feature).

Multiple JPEG compression occurs when the image has undergone several compres-
sion and decompression steps, which can be due to tampering or copy-move forgery,
modifying the statistics of the coefficients. With each compression, the statistics of the
DCT coefficients slowly deviate from the law. The Figure 5.9 shows the probability
mass function (pmf) of the First digits of the quantized DCT coefficients for different
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Figure 5.8: Feature generation process

compression ratios. Milani et al. [78] used first digit law to detect the number of com-
pressions the image has undergone. The strategy was to classify the features based on a
set of binary classifiers. The idea to generate features has been inherited from [72], but
reducing the number of subbands in the features. The features contained subbands 2,5
and 6 resulting in a feature vector of 27-D.

Pasquini et al. [79] used Benford-Fourier (BF) coefficients to detect uncompressed
JPEG images from the compressed ones. The following section explains the statistics
of Benford-Fourier (BF) Coefficients.

Consider a random variable X, which models all the 8 x 8- block DCT coefficients
with symmetric pdf fx(X) with respect to 0. Then a random variable Z determined by
the probability density function,

fz(z) =

2fx(z), z > 0

0, z ≤ 0.
(5.10)

For a continuous random variable, Z, the pdf of Z̃ (Z̃ = log10 Z) can be expressed
as:

fZ̃(z̃) = 1 + 2
+∞∑
n=1

|an|cos(2πnz̃ + φn), z̃ ∈ [0, 1) (5.11)

As discussed in various literatures, the distribution of X can be modeled by a Gen-
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Figure 5.9: Pmfs of the first digit (FDs) with respect to the Benford’s coefficients (BC)
at different compressions

eralized Gaussian (GG) pdf,

fx(x) =
βc

2Γ(1/c)
e−|βx|

c

, β =
1

σ

√
Γ(3/c)

Γ(1/c)
(5.12)

where σ is the standard deviation and c is the shaping factor. Thus an and its magnitude
can be written as (derived in [71])

an =
2A

βc
e
j
2πn log β

log 10 Γ

(
−j2πn+ log 10

c log 10

)
(5.13)

|an| =

√√√√ ∞∏
k=0

[
1 +

(2πn)2

log2 10(ck + 1)2
]

(5.14)

Thus it can be seen that the Benford-Fourier coefficients are dependent on c and n
and can be used to differentiate between compressed and uncompressed images.

The Benford-Fourier coefficients are given by,

an =

∫ +∞

−∞
fz(z)e−j2πn log10 zdz (5.15)
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or it can be written as the expected value of a random variable dn(z) where,

dn(Z) = e−j2πn log10 Z (5.16)

An estimation of such coefficients from M samples as,

ân =

∑M
m=1 e

−j2πn log10 Zm

M
m = 1, ....M (5.17)

whereZm are the random variables represents the DCT coefficients at the corresponding
frequency in the block m, which are Independently and Identically distributed. On
applying the Central Limit Theorem to real and imaginary parts of an we have,

ân = an +W0 (5.18)

where an is the sample mean andW0 is the zero-mean complex normal random variable.
For W0 to be circularly symmetric E{W 2

0 } = 0. That is,

E{W 2
0 } = E{(ân − an)2} =

1

M
(a2n − a2n) (5.19)

It is already known that distribution of R := |ân| is given by the Rice distribution,
with parameters |ân| and σ, where σ is the standard deviation. Thus,

σ2 =
{|ân|2} − |an|2

2
=

1

2M
(1− |an|2) (5.20)

Since an is very small when n ≥ 3, which leads to issue in solution for the Rice dis-
tribution. Thus, we apply a special case of Rice distribution, the Rayleigh distribution,
where |an| ' 0 and σ = 1/

√
2M :

fR(r) = 2Mre−Mr2 (5.21)

A binary hypothesis test is then decided for uncompressed images, which gives a
threshold given the upper bound to the probability of false alarm. Inspired by [79],
authors in [80] proposed a method to detect multiple JPEG compressions and also iden-
tify the quality matrix with which it is compressed. Figure 5.10 shows the detection
algorithm for the proposed work.

Anti-Forensics or counter-forensics aims at hiding the traces of manipulation in im-
ages such as the effect of JPEG compression. These techniques have been used in CFA
forensics, median filtering detection, histogram-based methods, etc. In [81], the authors
have proposed an anti-forensics technique that conceals the effect of JPEG compression,
thus reproducing an uncompressed image from a single JPEG compressed image. The

43



Estimation of 
Inherent 
Statistics

Final 
decision

Definition of 
alternative 
hypothesis

Multiple binary 
hypothesis test

Input image

Figure 5.10: Detection algorithm for multiple JPEG compression [80]

idea is to redistribute the First significant digits (FSDs) of the JPEG compressed image
to recover the original distribution of the DCT coefficients. The statistical DCT coef-
ficients of the uncompressed image closely follow the Benford’s law as compared to
the JPEG compressed image (Figure 5.11). Considering, for any sub-band (i,j) whose
quantization factor is Q(i, j), and the histogram contains peaks which are multiples of
the quantization factor Q(i, j). They then define, vectors pk, k ∈ Z in each subband
containing multiples of the QF Q(i, j).k. The next step is to redistribute the quantized
coefficients in pk such that to obtain a Laplacian histogram among the quantization
interval,

IQ = [kQ−Q/2, kQ+Q/2] (5.22)

The aim is to uniformly distribute the values of vector pk in the range [L1, L2], where

L1 = log10(|kQ−Q/2|) (5.23)

L2 = log10(|kQ+Q/2|) (5.24)

(a) (b)

Figure 5.11: Deviation of Benford’s Law for a) JPEG compressed b) and Uncom-
pressed image

Another anti-forensics technique to hide the effects of double compression such
that the compression detectors based on Benford’s law are unable to detect the effect is
proposed in [82]. Most of the approaches detecting frauds in double or multiple JPEG
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compressions relies on measuring some distance from empirical pmf p̂(m) of Benford’s
law to the actual pmf p(m) of the first significant digits of the DCT coefficients. One
of the techniques is to measure the difference between the pmf using Kullback-Leibler
(KL) divergence DKL as,

DKL(p||p̂) =
9∑

m=1

p(m)
p(m)

p̂(m)
(5.25)

An image is considered double compressed when the divergence DKL is less than a
given threshold TKL (which is decided by a forensics expert). The proposed algorithm
alters the statistics of the coefficients such that the KL divergence of Benford’s pmf to a
double compressed imageD2

KL is nearly equal to the divergence of a single compressed
image D1

KL.

5.4 Benford’s Law in Audio and Printer Forensics

Audio Forensics, similar to image and video forensics is related to the analysis
and the authentication of audio and music recordings. Just like JPEG in images, Mp3
compression is the widely used form of audio compression. Similar to image editing
software, audio editing software is readily available in the market, which can convert a
low bit rate mp3 audio to a high bit rate audio. A brief introduction to MP3 compression
is given in the next paragraph.
The first step in MP3 compression is to separate the input signal (PCM) into multiple
components, using a filter bank. Here, the size of the filter bank is 32. Further, MDCT
(Modified Discrete Cosine Transform) is applied on each subband transforming it into
length of (18 or 6 subband samples), which generates a total of 576 or 192 subband sam-
ples. The psychoacoustic model uses perpetual coding (based on how humans perceive
sound) and eliminates information inaudible to our ears, precisely detecting conditions
under which audio signals mask each other. Next step is the quantization of the spectral
values decided by the previous step. Finally, the quantized spectral values are encoded
using Huffman encoding resulting in the MP3 bitstream. The decoding process is as
follows. The first step is to perform Huffman decoding on the MP3 bitstream, follow-
ing the inverse quantization and IMDCT to get the coefficients in the subband domain.
The synthesis filter generates the PCM waveform in the final step. The block diagram
of MP3 compression and decompression is shown in the Figure 5.12.

Authors in [83], used Support Vector Machines (SVMs) to differentiate between
double and single compressed audio using the features as the first digit distribution of
the MDCT coefficients. Particularly, the feature set consists of 9 values of probability
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Figure 5.12: MP3 encoder and decoder block diagram

distribution corresponding to each digit and is fed to the SVM for each audio. This
method proposed is the global method. Another method proposed is the Band distri-
bution method in which the 576 coefficients are divided into 32 bands, and then the
MDCT statistics on the first digits are calculated. The second method of Band distribu-
tion outperforms the global distribution method.

A method to identify printer’s make and model from the printed and scanned images
was proposed in [84]. Traditionally, noise feature extraction, i.e., extracting randomness
from the noise pattern was used for printer classification.
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Figure 5.13: Multi-Size Block DCT Coefficients Flowchart [84]
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Here, the authors proposed to use the first digits DCT coefficients at different block
sizes to detect the weak noise pattern.

Finally, the resulting feature is a 9-D vector averaged over each first digit value and
classified using Support Vector Machines (SVM). Figure 5.13 shows the block diagram
of the proposed algorithm.
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Chapter 6

Conclusion

The planet Earth, since its formation, has been pummeled by asteroids and mete-
orites which over time have been eroded due to rain and wind, destroying the traces of its
past and origin. But Moon, the Earth’s natural satellite still holds the clues to our history
and origin. The surface of Moon is abundantly filled with giant impact craters, rocks,
rivers, VRC’s where craters constitute 80% of the surface area. Thus, studying these
craters can answer the most vexing questions of all time, “How did the Earth form?”
To settle this debate, the first Apollo mission brought the rocks- precisely 382kg from
the cold and dry surface of the Moon, to unveil its formation and its relation to Earth.
Since then, missions like SELENE, Chang-E1, Chandrayaan-1 have been send to the
Moon to gather more information about its surface and formation. Many researchers
have worked on the dataset from different missions on the Moon to locate craters and
further analyze it to study the geological formation of the Moon. Despite numerous
publications in this domain, most of the algorithms are data specific or requires a lot of
manual intervention.

This dissertation presents an automated method to detect impact craters on the sur-
face of Moon through the ortho images, DEM and slope images derived from DEM.
Since no dataset is build keeping in mind all the three images, we have built our dataset
consisting of images with widely varying densities and area, challenging our CDA.
Most of the CDA’s are data dependent and fails to work for different terrains. Thus,
we have also tested our method on Chandrayaan-1 to observe the effect of resolution
and on Martian data, to check if our algorithm is data dependent or not. Our algorithm
performs very well when trained and tested with LRO dataset and has detected ∼1000
new craters per test image.

Manual observation on Chandrayaan-1 dataset has revealed that the higher resolu-
tion data of Chandrayaan-1 shows very different patterns for slope than LRO. It should
also be noted that median filtering has been applied on Chandrayaan-1 DEM data to re-
move spurious peaks and dips. Also, we have noticed that due to very high resolution,
the area covered by a single Chandrayaan-1 image is relatively very low then the LRO
image resulting in incomplete craters near the edges. Such part of craters is misclassi-
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fied by CNN as craters which results in low mAP because of localization inaccuracies.
We believe that fine-tuning the CNN model using transfer learning on Chandrayaan -1
data may improve the final mAP . The model used for generating results on Martian
dataset achieves mAP@0.5 of 84.78% and mAP@[0.5, 0.9] of 59.18%, without param-
eters tuning. We hope to obtain better mAP with transfer learning on Martian dataset.

We have used LRO (Lunar Reconnaissance Orbiter) dataset with a resolution of 100
m for ortho images and 118 m for DEM in our Crater Detection Algorithm (CDA).
Working with such low resolution limits our CDA to detect very small craters. Thus,
our next step would be to work on Chandrayaan-1 dataset having a high resolution of 10
m for ortho and 5 m for DEM data. Currently, our model has been trained using ortho
images in one lighting direction, i.e., shadow to bright region (shown in green color
in Figure 4.2). For fine-tuning the model, it needs to be trained for different lighting
conditions. Since DEM is independent of the sun angle conditions and in similar sense
slope images, it would be interesting to observe the effect of training on only DEM and
slope images.

As of now, we have used a binary model, differentiating between the crater and the
non-crater class. Craters vary greatly in their shapes and size, depending upon the type
of impact and the lunar surface morphology. Further, the lunar surface also harbingers
other landforms such as volcanic rootless cones (VRCs) and rivers. Thus, we wish to
build a multi-class dataset differentiating craters based on shape (such as round and floor
craters), complexity (such as simple and complex craters), overlapped craters, VRC’s.
Further, crater rim is not always a perfect circle. Getting an estimate of center and
radius from our CDA can help us identify the true shape of craters, on developing a rim
identification algorithm. Any object detection algorithm greatly depends on the quality
of region proposals used. We have used the Felzenswalb & Huttenlocher [54] method
for finding regional proposals, giving a recall on an image of∼ 75%. This recall means
on an average the number of proposals matched with the ground truth having an IOU of
at least 0.6. Using an algorithm such as Selective search and Edge boxes can probably
increase this recall to improve the accuracy of our algorithm.
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